skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yi, Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 19, 2026
  2. NA (Ed.)
    We describe an exciting new application domain for deep reinforcement learning (RL): droplet routing on digital microfluidic biochips (DMFBs). A DMFB consists of a two-dimensional electrode array, and it manipulates droplets of liquid to automatically execute biochemical protocols for clinical chemistry. However, a major problem with DMFBs is that electrodes can degrade over time. The transportation of droplet transportation over these degraded electrodes can fail, thereby adversely impacting the integrity of the bioassay outcome. We demonstrated that the formulation of droplet transportation as an RL problem enables the training of deep neural network policies that can adapt to the underlying health conditions of electrodes and ensure reliable fluidic operations. We describe an RL-based droplet routing solution that can be used for various sizes of DMFBs. We highlight the reliable execution of an epigenetic bioassay with the RL droplet router on a fabricated DMFB. We show that the use of the RL approach on a simple micro-computer (Raspberry Pi 4) leads to acceptable performance for time-critical bioassays. We present a simulation environment based on the OpenAI Gym Interface for RL-guided droplet routing problems on DMFBs. We present results on our study of electrode degradation using fabricated DMFBs. The study supports the degradation model used in the simulator. 
    more » « less
  3. Federated learning (FL) is a collaborative machine-learning (ML) framework particularly suited for ML models requiring numerous training samples, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Random Forest, in the context of various applications, e.g., next-word prediction and eHealth. FL involves various clients participating in the training process by uploading their local models to an FL server in each global iteration. The server aggregates these models to update a global model. The traditional FL process may encounter bottlenecks, known as the straggler problem, where slower clients delay the overall training time. This paper introduces the Latency-awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing (LESSON) method. LESSON allows clients to participate at different frequencies: faster clients contribute more frequently, therefore mitigating the straggler problem and expediting convergence. Moreover, LESSON provides a tunable trade-off between model accuracy and convergence rate by setting varying deadlines. Simulation results show that LESSON outperforms two baseline methods, namely FedAvg and FedCS, in terms of convergence speed and maintains higher model accuracy compared to FedCS. 
    more » « less
  4. Cold sintering enabled the upcycling of polypropylene with gypsum (CaSO4) into a fully recyclable composite, paving the way for the integration of waste into high-performance, recyclable composites. 
    more » « less